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It has been known for some time that small deviations from the 
Onsager-Casimir symmetry relations are introduced when one passes from a 
given description of a system to a less detailed one by adiabatic elimination of 
fast variables. Exact validity is preserved, however, for a slightly modified form 
of these relations. In this paper the question is considered whether this modified 
Onsager symmetry is also preserved by the transition from a microscopic to a 
mesoscopic description, the step that introduces manifest irreversibility into the 
equations of motion. This question is examined in detail for a system of a few 
heavy oscillators coupled to a bath, a model discussed in a recent paper by van 
Kampen. The modified Onsager symmetry survives the transition to an irrever- 
sible description via the dense spectrum approximation. This is shown explicitly 
by inspection of the results obtained by van Kampen; some arguments favoring 
a more general validity are also briefly discussed. 

KEY WORDS: Onsager-Casimir symmetry; contracted description; coupled 
oscillator models; Liouville equation. 

1. I N T R O D U C T I O N  A N D  S U R V E Y  

Onsager 's  reciprocity relations, (1) later extended by Casimir, (2) express 
restrictions on the possible forms of macroscopic  relaxat ion equat ions  that  

follow from the time reversal invar iance of the microscopic equat ions  of 
motion.  Onsager 's  der ivat ion uses the famous regression hypothesis." he 

assumes that  the f luctuations a round  equi l ibr ium decay according to the 
macroscopic relaxat ion equations.  Closer inspect ion of the proof shows 

that this requi rement  must  be imposed for all times, whereas the validity of 
macroscopic  relaxat ion equat ions  is restricted to macroscopic time scales. 
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As was first noted by McLennan, ~3) deviations at small times~ so-called 
initial slip effects, should cause deviations from Onsager symmetry as well; 
these deviations were shown explicitly for the case of the linearized Burnett 
equations. Similar conclusions were reached by Geigenmi.iller eta/. (4) in an 
analysis of adiabatic elimination schemes: exact validity of Onsager 
symmetry on one level of description implies only approximate Onsager 
symmetry after the adiabatic elimination of fast variables. These authors 
also proposed a modification of the Onsager relations that allows them to 
survive the adiabatic elimination procedure. 

The analysis in ref. 4 enables one to deduce the validity of the suitably 
modified Onsager relations on the macroscopic level when their validity on 
the mesoscopic level is assumed. This procedure was demonstrated in detail 
in two recent papers for the cases of the generalized Smoluchowski 
equation ~5~ and of the linearized Burnett equations. ~6) This of course leaves 
the question of how to derive the mesoscopic Onsager symmetry from the 
microscopic equations of motion. Since there is no universal algorithm for 
deriving mesoscopic equations, the question can be answered only for 
special cases. In this paper I shall mainly discuss a coupled oscillator model 
(a number of heavy oscillators in a common bath) treated in a recent paper 
by van Kampen; (7) his paper also contains a survey of earlier work on 
closely related models. The analysis will show that the modified Onsager 
symmetry proposed in ref. 4 is also valid on the mesoscopic level, at least 
for van Kampen's example. 

It turns out to be convenient to focus attention not on the Onsager 
relations themselves, but on a mathematically equiva!ent property, a 
relation between the left and right eigenvectors of the evolution operator 
discussed by Felderhof and Titulaer. (8'9) In Section2, I establish this 
relation for the microscopic equation of motion, i.e., for the Liouville 
equation. Since van Kampen's Hamiltonian is not invariant under time 
reversal, I discuss the general case, already treated in ref. 9, where the 
Hamiltonian depends on some parameters odd under time reversal. The 
analysis closely follows the one in refs. 8 and 9, and it is mainly included to 
establish the notation and to make the paper reasonably self-contained. 

In Section 3, I discuss the transition from the exact microscopic 
evolution to an effective irreversible evolution for positive times, and show 
that the symmetry property derived in Section 2 is preserved in this 
process. The explicit verification turns out to be particularly simple for 
van Kampen's choice of the Hamiltonian and the fundamental variables. In 
Section 4, I discuss the contraction of the description, in van Kampen's 
case by elimination of the bath variables. Formally, the steps to be taken 
are quite similar to those in ref. 4, but some care is needed in the inter- 
pretation of the formalism (transition from microscopic phase functions to 
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expectation values). Moreover, some modifications are needed due to the 
parameters in the Hamiltonian that are odd under time reversal. The final 
section contains a statement of the conclusions and some remarks and 
speculations about possible extensions to more general cases. 

2. S Y M M E T R Y  PROPERTIES OF THE LIOUVILLE O P E R A T O R  

Since the Liouville operator is a linear operator that correctly 
describes the time evolution of phase functions on all time scales, it is not 
surprising that it should obey exact Onsager-Casimir symmetry when the 
condition of (generalized) microscopic reversibility is fulfilled. However, in 
order to show this explicitly, one must first recast the Liouville equation as 
a set of coupled linear evolution equations for a set of phase functions; this 
form is obtained below in (2.7). I then show that the evolution matrix 
figuring in this set of equations obeys the relations (2.15) and (2.18) that 
were earlier shown (9) to be equivalent to exact Onsager Casimir symmetry. 
In the final part of the section I note some simple but useful corollaries. 
The results are not surprising physically, but I felt it necessary to present 
the derivation in some detail, since the formal point of view taken may not 
be too familiar. Most of the details of the formalism are not essential, 
however, for an understanding of the developments in the later sections of 
the paper. 

The dynamics of the phase functions of a classical many-particle 
system, i.e., of the functions of coordinates and momenta {q,} and {Pn}, 

g({Pn}, {qn}, t) =- g({pn(t)}, {qn(t)}) (2.1) 

is governed by the Liouville equation 

d 
dt g = {g' H(B)} ~ ~ ( B )  g (2.2) 

where {.,.} denotes the Poisson bracket. The Hamilton function H(B) of 
the system depends on some parameters B~ with odd time parity, such as 
magnetic fields or overall rotation velocities; they are denoted collectively 
by B. The Liouville operator ~ '  is anti-Hermitian with respect to the scalar 
product 

( f ,  g)E,B ~ (f*g)mc,E (2.3) 

where (A)~o,e denotes the microcanonical average over the shell 
H({Pn}, {qn}, B ) =  E. The eigenvalues /~ of ~ are purely imaginary and 
the corresponding eigenfunctions are orthogonal with respect to (2.3). 
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The abstract operator J#(B) can be represented as an (infinite) matrix 
via the choice of a basis ei({pn}, {q,}) in the Hilbert space of phase 
functions with the scalar product (2.3). The e~ should be complete and 
independent; moreover, I require them to be real and to be eigenfunctions 
of the time-reversal operator ~# defined via 2 

5#p,, = _p , ,  ~'q, = q~ (2.4) 

I do not require the {e~} to be orthogonal; their scalar products are 
denoted by 

<ei, ej)E,B-- [G(B)],)-' (2.5) 

where ! suppressed the dependence of G on E. For a system with simple 
microscopic reversibility, i.e., invariance of the dynamics under (2.4), 
[G(B)]0. 1 should vanish when ei and ej have different time parity. For the 
case of generalized microscopic reversibility, i.e., invariance under (2.4) 
supplemented by inversion of the {Bk}, such matrix elements are allowed, 
but they should be odd in the {Bk}. This property is expressed compactly 
as  

U. G(B).  U = G ( - B )  (2.6) 

where U denotes the representation of the operator 0g, i.e., U~j=cS~jtlj, 
where r/j= ___1 is the time parity of ej. In the chosen representation, (2.2) 
translates into a coupled set of equations for the {ei({p,}, {q,}, t)}: 

d 
ei-= ~ M(B) U ej (2.7) 

j 

with 

M(B),j  = y~ [O(B)]j~ I <e~, ~r e,>E,n 
k 

= - 2  <e,, ~ ( B )  ek)em [G(B)]k51 (2.8) 
k 

If one denotes the eigenfunction of ~d with eigenvalue #k by 

/(B) k ({p,,}, {q.})= ~)7(B)~ ei({p.}, {q.}) (2.9) 
t" 

2 Physically, it makes more sense to define time reversal in terms of a sign change of the 
velocities rather then the momenta; this will be accomplished, however, by the generalized 
time reversal to be discussed presently. 
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then the corresponding eigenvector of M(B) is 

f ( B ) ~  = ~ G(B)aT(B)~ (2.10) 
J 

and the orthogonality of the functions (2.9) translates into 

f(B)~* G(B)u f(B)J = 6~, (2.11 ) 
U 

This relation and the symmetry of G(B) imply that G(B).  f(B) k* is the left 
eigenvector of M(B) with eigenvalue #k. Note, however, that, due to the 
reality of M(B), the vector f(B) k* is also an eigenvector of M(B), with 
eigenvalue #~ = -#k .  To obtain a relation between left and right eigen- 
vectors belonging to the same eigenvalue, one may exploit the relation 

~g//g(B) ~ = - / / { ( -  B) (2.12) 

which follows from generalized microscopic reversibility. This relation, 
together with (2.6) and (2.8), implies 

M ( - B ) .  U.  f(B) k• = +/~kU" f(B) k• (2.13) 

Thus, a possible choice for the eigenvector of M ( - B )  to the eigenvalue #~ 
is 

f( - B)k = _ U .  f(B) k* (2.14) 

where the minus sign is purely conventional. The relation (2.11) can now 
be rewritten as a real biorthonormality property between the right eigen- 
vectors of M(B) and M ( - B ) :  

f ( -  B) k. G(B).  f(B)t = (~kt (2.15) 

with the indefinite "weight matrix" 

~ ( B ) =  - U  .G(B)  (2.16) 

The left eigenvector of M ( - B )  to the eigenvalue #k is now given by 

- G ( - B ) "  U �9 f(B) k=  - U  �9 G(B) �9 f(B)k = ~(B)" f(B) ~ (2.17) 

where I used the relation between left and right eigenvectors derived from 
(2.11), as well as (2.6). Thus, the matrix (~(B) transforms a right eigen- 
vector of M(B) into a left eigenvector of M ( - B )  to the same eigenvalue. 
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The transposed matrix M ( - B )  r is therefore connected with M(B) by the 
similarity transformation 

M(-B)T= ~(B)- M(B). G(B)-' (2.18) 

Since the relation (2.18) was shown/8'9) to be equivalent to Onsager- 
Casimir symmetry, I shall occasionally call (2.18) the Onsager-Casimir 
symmetry property. The matrix G(B) is in general not symmetric; from 
(2.6) and the symmetry of G(B), apparent from (2.5), one finds 

~(B)T= G ( - B )  (2.19) 

a relation that resolves the apparent asymmetry between B and - B  in 
(2.15). 

The similarity relation (2.18) also holds for any function of the matrix 
M(B), such as the evolution matrix 

T(t; B) = exp[M(B) t] 

and the resolvent 

R(z; B ) -  [ z -  M(B)] --1 

(2.20) 

(2.21) 

and in particular also for all spectral projections, which can be obtained 
from R(z; B) by contour integration. (l~ 

3. IRREVERSIBIL ITY  A N D  Q U A S I E I G E N V E C T O R S  OF THE 
LIOUVILLE O P E R A T O R  

There is no generally applicable algorithm that allows one to derive a 
closed macroscopic or mesoscopic description of a system from the 
microscopic dynamics governed by the Liouville equation. Therefore, one 
should not expect to find a general scheme for deriving mesoscopic or 
macroscopic Onsager-Casimir symmetry relations from the microscopic 
ones discussed in the preceding section. For many systems one may derive 
or justify a coarse-grained description by means of a master equation. For 
closed systems with microscopic reversibility the transition kernel ~f  
occurring in the master equation satisfies (extended) detailed balance 
properties I~1) that lead to relations between left and right eigenfunctions of 
the master operator quite similar to those just discussed for the case of the 
Liouville operator. For two special master equations, the Klein-Kramers 
equation and the linearized Boltzmann equation, these relations were dis- 
cussed in detail by Hubmer and Titulaer/5'6) For systems with parameters 
B odd under time reversal that obey generalized microscopic time-reversal 
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symmetry one may similarly derive relations between the master operators 
~ ( B )  and ~r B) from which relations between the left eigenfunctions of 
the one and the right eigenfunctions of the other may be deduced. In all 
these cases the detailed balance-type properties of ~/r are derived directly 
from the microscopic reversibility requirements, and the symmetry proper- 
ties of the Liouville operator do not enter as such into the argument. 

For some special systems, however, the reasons for the appearance of 
irreversible behavior can be analyzed in more detail. The example treated 
most completely consists of an assembly of linearly coupled harmonic 
oscillators: a number of heavy oscillators are coupled weakly to a large 
number of bath oscillators. A recent discussion of such a system was given 
by van Kampen(7); he considered heavy oscillators with annihilation 
"operators" Ar and bath oscillators with annihilation "operators" a~ gover- 
ned by the Hamiltonian 

H=~f2rA*Ar+~ka~ak+Y.(vr~A*a~+v*kAra* ) (3.1) 
r k rk 

(I consider only the classical version of this system; the annihilation 
"operators" are defined by 

l I (Mr f2r )b ,2Qr+ (Mr{2r) 1/2i Pr I (3.2) A, - 7-~ 

etc., and their complex conjugates are denoted by A* rather than AT.) 
Since time reversal amounts to complex conjugation of the Ar and ak, the 
Hamiltonian (3.1) is not invariant unless one requires the imaginary parts 
of the vrk to change sign under time reversal as well; the latter therefore 
p]lay the role of the B in Section 2. 

Van Kampen shows that for a sufficiently dense spectrum of the bath 
oscillators (12) (and for a sufficiently smooth dependence of the v~e on k) the 
action of the evolution operator T(t; {v,k}) for the Ar and ak can be 
mimicked for t > 0 by an effective evolution operator of the form 

Teff(t) = E C,e ~Ar,+ ~ C~e-~k' (3.3) 
r k 

with complex frequencies A r (with negative imaginary parts). Explicit 
approximate expressions are given for the Cr and the C k for the case of two 
heavy oscillators with equal f2,. It seems reasonable to expect that the 
symmetry properties of type (2.18) transfer from T(t; {Vrk}) to T~(t; {vk}), 
and hence to the quasieigenprojectors Cr and C k. This in turn would imply 
Onsager symmetry for the effective evolution operator 

M~fr(t) = --~ iA,Cr-~ ikC, (3.4) 
r k 
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For the system described by (3.1) the symmetry (2.18) takes a par- 
ticularly simple form. Both M and G for the subspace of phase functions 
spanned by the annihilation operators and their complex conjugates can be 
expressed in terms of the coefficient matrix of H: 

H=( l'2r(~rr' Vrk' ) (3.5) 
\ Vr* k kg)kk, 

The respective expressions are 

0 iH r , G = 2 ~  H r (3.6) 

(the block notation refers to the {At, a,} and {A*, a~} subspaces). The 
expression for G was calculated with a canonical instead of a 
microcanonical average, which is justified for a large system. Hence, for our 
system, and in the chosen representation, the matrices G and M commute 
and the Onsager-Casimir symmetry requirement (2.18) becomes 

J [ M ( { v * k } ) ]  = U" M({v,k})"  U (3.7) 

where ~--[C] denotes the operation corresponding to matrix transposition 
in a real representation. As I shall show in the Appendix, this operation in 
the complex representation used in ref. 7 amounts, for the matrices 
considered, to transposition plus sandwiching between U matrices. Hence, 
the condition (3.7) in complex representation reads 

M({v**}) r =  M({vrk})  ( 3 . 8 )  

which is clearly satisfied due to the Hermiticity of H, which contains no 
complex numbers except the {v,k}. The form (3.8) for the relation (2.18) 
holds equally for any function of M, and in particular for its spectral 
projectors. The quasieigenprojections (3.4), as calculated explicitly by 
van Kampen, are no longer Hermitian; they do, however, turn out to 
satisfy (i stands for r or k) 

= (3.9) 

[-In verifying this result, one should note that the quantity 7 in 
Eqs. (34)-(38) of ref. 7 is defined in (29) of that work as the phase of the 
average value of vlkv2*~ around k = f2, and hence changes sign when the vr, 
are replaced by their complex conjugates. The imaginary parts of the A,, 
however, do not change under this replacement.] Thus, the conjecture 
about the preservation of the symmetry (2.18) during the transition to the 
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effective Liouville operator can be verified for van Kampen's example. This 
is not completely unexpected, since the quasieigenprojectors may be con- 
sidered as the residues of poles in the analytic continuation of the resolvent 
R(z) = [ z -  M] 1 across the cut that evolves (12"18~ from the alternation of 
poles and zeros on the imaginary z axis in the dense spectrum limit. Since 
R(z) satisfies the Onsager-Casimir symmetry (2.18) throughout the 
physical sheet, it should retain this property upon analytic continuation. 

The explicit construction of the quasieigenprojectors in van Kampen's 
example relies heavily on the special properties of the coupled oscillator 
system. On the other hand, quasimodes of the Liouville operator with com- 
plex frequencies are widely discussed in the literature; they play an essential 
part in the Mori Zwanzig projection operator formalism. (13) If the picture 
of two evolution operators Y(t) and -felt(t) that describe practically 
indistinguishable evolutions for t>0 ,  and hence have practically 
indistinguishable resolvents for Re z > 0, is more generally valid, then a 
mechanism for the transference of Onsager-Casimir symmetry from Y(t) to 
Te~(t) immediately suggests itself. Note, however, that "fen(t) is still an 
evolution operator in the full phase space of the system (or in some 
invariant subspace containing phase functions related to all degrees of 
freedom). The fate of the symmetry relations under a contraction of the 
description will be discussed in a slightly broader context in the next 
section. 

4. S Y M M E T R Y  PROPERTIES OF R E D U C E D  EVOLUTION 
O P E R A T O R S  

In the two preceding sections I considered the dynamics in the Hilbert 
space of phase functions. The equations that describe the time dependence 
of the phase functions also describe the evolution of their expectation 
values for a distribution f({p.},  {qn}) of the coordinates and momenta, 

<e,>m(t)=fd{p.} d{qn}f({p,,}, {qn})e,({pn}, {qn}, t) (4.1) 

The set of equations for the (ei)z can be simplified if one succeeds in 
choosing the ei in such a way that the first k of them have only small com- 
ponents outside of the range of a k-dimensional spectral projector ~ in the 
Hilbert space that corresponds to a spectral projector P of the evolution 
matrix M o r  Meff .  3 One may then decompose f according to 

f = f o + L ;  f o = ~ f  
3 [ shall temporarily omit the argument B or -B. 

(4.2) 
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and the expectation values (ee) accordingly as 

(ei)f(t)= (ei)o (t)+ (ei)l (t) (4.3) 

For the purpose of calculating the (e~)o (t) one may treat the e~ with i >  k, 
denoted collectively as y, as linear combinations of the e~ with i~k, 
denoted collectively as x; from 

( (X)o)  = (Px~ P~y~((X)o'~ (4.4) 
(Y>o) \Py~ P y J \ ( Y > o )  

where Px.~, etc., are appropriate submatrices of P, one concludes 

( y ) 0  = [1 - pyy]-l. Pyx" ( X ) o -  R" ( x )  o (4.5) 

The matrix R was designated as the reconstruction matrix (14) (or operator). 
The evolution of the (X)o follows from 

( Mxy)( (X)o "] (4.6) 
d t \ R ' ( x ) o  / My~ Myy R'(x)o / 

where Mxx, etc., are the appropriate submatrices of M or Merr.The first 
row of this matrix equation yields a closed evolution equation for (X)o: 

d 
d-t ( x ) ~  (M~+ Mxy" R)" ( X ) o -  Mreo" (X)o (4.7) 

while the second row yields the consistency condition 

R" M r e  d - -  Myx+ Myy" R (4.8) 

that may be used, together with the definition of Mre d in (4.7), to determine 
N perturbatively. The quantities Myx and Mxy are small by construction; if 
one assumes M xx to be small as well, one obtains the algorithm for the 
adiabatic elimination of fast variables(15); when both Mxx and Myy are 
assumed to be of order unity, one obtains a variant of the perturbation 
theory familiar from quantum mechanics4; when Myy is treated as small, 
one obtains a dynamics for fast variables (at virtually constant values of 
the slow variables) considered by Geigenmiiller et al/17) 

As in refs. 4-6, I shall now deduce orthogonality properties between 
the eigenvectors of Mrea(B) and Mrea(-B) from those between the eigen- 
vectors of M(B) and M ( - B ) ,  or of their effective counterparts. From the 

4 More specifically: a variant of this formalism discussed by Bloch ~ and Kato, (1~ generalized 
from single eigenvalues to groups of eigenvalues. 
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construction of Mrod(B) it follows that its eigenvectors x(B) # are just the 
x parts of those eigenvectors f(B) k of M(B) or Melt(B) on which the 
projector P(B) projects. From the orthogonality relation (2.15), which is 
preserved by the transition to Melt(B), one sees that 

x ( - B )  k "~T.(~(B)x x ~(B)xy" ~ x(B)'  '~ 
R'x(-B) kj \(~(B)yx (~(B)yyJ'\R'x(B)S/=3k' (4.9) 

which can be written as 

x ( - B )  k. ~ (B)rec I " x(B)Z = cSk, (4.10) 

with a reduced G matrix defined as 

~(B)red  = ~(B)xx + ~(B)xy" R(B) 

+ FI(-B)T" ~yx(B) 

+ R ( - B )  T" Gyy(B). R(B) (4.11) 

From the relation (4.10) between the eigenvectors, analogous to (2.15), one 
immediately derives the analog of (2.18), 

M ( -  B)rr~d = G(B)red �9 M(B)r~a " ~ (B)r~, ~ (4.12) 

Simimarly, the analog of (2.19), 

~( - B)r~d = ~(B)~e~ (4.13) 

follows directly from (2.19) and (4.11). Thus, the modified Onsager- 
Casimir symmetry survives the transition to a reduced dynamics. 

Thus far I have merely shown the symmetry properties for the 
dynamics of the rather formally defined objects (x)0( t ) .  Whether and 
when they correspond to the physically observed quantities ( x > ( t ) -  
<X>0(/)-~-<X>l(t ) depends on the physics of the case considered. When 
there is a difference in orders of magnitude between the eigenvalues on 
which P projects and the remaining ones, the part (X>o(t) dominates 
either the initial or the long-time part of (x>( t )  (after time smoothing if 
the large eigenvalues are purely imaginary). This is the adiabatic 
elimination case extensively discussed elsewhere. ~4 6) For the example 
discussed in the preceding section, one may choose for P the projection on 
the quasieigenvectors associated with the complex eigenvalues of Meff, and 
for the ei the coordinates and momenta of the heavy oscillators. For this 
case the (x>1(t)  contain the contributions of the continuous spectrum of 
[Vl~fr to the dynamics, as well as the error terms involved in the transition 
from M to M,ff. A careful discussion of these terms for a single heavy 
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oscillator was given by Ullersma (18)'5; it turns out that ( x )  1 (t) is negligible, 
except at small times, where there are transients that depend on the bath 
size, and at very large times, after the (X)o(t) have almost died out. (At 
least, this is the case for "reasonable" distributions of coordinates and 
momenta of the bath oscillators, and in particular if the latter are in ther- 
mal equilibrium.) The matrix Mrea also governs the decay of the thermal 
fluctuations of the x, again up to transients and large time contributions, 
since these may be expressed as expectation values of the x~ for 
distributions Xjfeq. These distributions do not lie completely within the 
range of P, hence the autocorrelation functions in general will have 
transient contributions. 

5. C O N C L U D I N G  R E M A R K S  

The main result of this paper is the preservation of the weighted 
orthogonality relation (2.15) or the similarity relation (2.18) under a 
number of procedures involved in the transition from a microscopic to a 
mesoscopic or macroscopic description: the transition to an effective, 
irreversible evolution by means of the dense spectrum approximation and 
the elimination of certain of the variables from the description. In the 
course of the latter procedure the matrix ~ is replaced by a matrix ~red in 
the reduced variable space. The simple relation (2.16) between ~ and the 
matrix G that occurs in the expression for the equal-time correlations is 
thereby destroyed; the reduced G matrix formed in analogy with (4.11) 
would be 

G(B)red = G(B)x~ + G(B),:y �9 R(B) + R(B) r- G(B)y x + R(B) r" G(B)yy. R(B) 

(5.1) 
Physically, x .  Gred" X is, up to a factor, the entropy (or free energy) content 
of a deviation from equilibrium completely within the P subspace charac- 
terized by the main components x. (4'6) However, as was shown in refs. 4-6, 
it is ~red rather than G red that determines the back-extrapolated initial 
values of the P part of the autocorrelation function, and hence may be 
measured in favorable cases by scattering experiments. (3) The relation 
(2.16) holds for the leading terms in Gr,a and ~red, but not in general for 
the correction terms. The relation (2.16) is the condition for the 
equivalence of the relations (2.15) or (2.18) to the conventional 
Onsage~Casimir relations, as is discussed more fully in refs. 4-6. The 
correction terms, however, all involve, via R, the small coupling between 
eliminated and retained variables. Furthermore, the quantities G xy and Gyx 
are often small of the same order (as in van Kampen's example), or can be 
made small by a transformation of variables. (17) Thus, the difference 
5 A similar analysis for a many-oscil lator case was given by Ullersma and Tjon. (19) 
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between modified and orthodox Onsager-Casimir relations in general 
becomes apparent only in correction terms of second order in the smallness 
parameter. 

The derivations given in this paper are not optimal with respect to 
generality and mathematical rigor. The assumption of a discrete spectrum 
for the Liouville operator ~{, necessary for the existence of normalizable 
eigenvectors, can certainly be avoided at the cost of a somewhat more 
awkward formulation; the essential relation (2.18) can then be proved from 
the analog of (2.13) for spectral measures. The modifications needed for the 
case of multiple nonsemisimple eigenvalues (i.e., for matrices that can only 
be brought into the Jordan normal form) were already discussed in ref. 9. 

More serious mathematical issues are involved in the transition from 
Y(t) to T(t)e~ in Section 3. Van Kampen's calculation shows that each 
matrix element of the first matrix approaches the corresponding element of 
the second one; the conclusions drawn about convergence of the spectral 
decompositions would require certain uniformity conditions, in t as well as 
in k, for the rate of convergence of the matrix elements, and hence some 
additional boundedness and regularity conditions on the coupling con- 
stants and the density of the bath oscillators as a function of k. Also, the 
quasieigenvalues Ai and the parts of the associated eigenvectors in the 
heavy-oscillator subspace are calculated in ref. 7 only to the lowest non- 
trivial order in the couplings; calculations of higher order corrections for 
some special case would certainly be desirable as a further check on the 
general ideas in Section 3. 

The most serious restriction of our discussion is its essential use of the 
linearity of the evolution equations on all levels of description. Purely 
formally, linearity can always be maintained by keeping the number of 
variables sufficiently large, and in most cases infinite. A treatment of mode 
coupling effects by means of such a formally linear theory was developed 
by Machta and Oppenheim. ~2~ It would be interesting to see whether a 
study of the Onsager symmetry of such extended schemes could lead to 
restrictions on the structure of higher order corrections to nonlinear 
evolution equations. Generalizations of the Onsager relations to certain 
nonlinear systems were considered in the context of a Fokker-Planck 
description in Chapter X of ref. 11. 

APPENDIX  

In the complex (A, A*) representation used in Section 3 the matrices 
M and Me~ (and all functions of these matrices) have the form 

D~__(D 0 )  
0 D* (A.1) 
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An associated real representat ion can be obtained via the t ransformat ion 

1 1 
Q i = - ~ ( A i + A * ) ,  P i = - [ - - - ~ ( A i - A * )  (A.2) 

In the (Q, P)  basis the representat ion of the matrix (A.1) is 

Or (D' 
D" D ' J  (A.3) 

where D' and D" stand for the real and imaginary parts, respectively, of the 
matrix D in (A.1). Transposi t ion of D r implies 

D' --,, (D') T, D" --, - ( D " )  T, D -,. (D*) r (A.4) 

The complex conjugat ion can be removed by a time reversal transfor- 
mation,  which exchanges A and A*: 

(Dr)r <~ U-(De) T. U -Y -ED  c] (1.5) 

This relation proves the equivalence of (3.7) and (3.8). 
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